
REPORT 995

BLOCKAGE CORRECTIONS FOR THREE-DIMENSIONAL-FLOW CLOSED-THROAT WIm
TUNNELS, WITH CONSIDERATION OF THE EFFECT OF COMPRESSUHLITY

By JOHN G. HERRIOT

SUMMARY

Theoretical blochwgecorrectian~are prestnted for a body of
resolution and for a three-dimensionalunswept wing in a cir-
cular or rectangularwind tunnel. The theory takes account qf
the effects of the wake and of the compressibility of the $uid,
and is bagedon the assumption that the dimensions of the model
are s-mallin compan”sonwith thoge of the tunnel throat. For-.
mulas are giren for correcting a number of the quantities, wch
as dynamic preswre and Mach number, meawred in. mind-
tunnel tests. l%e report presents a sumrnay and un~~cation
of the ea”sting literature on the subject.

INTRODUCTION

Wheu ii modeI is placed in a closed-throat wind t.unneI
there is an effective constriction or bIockage of the flow at
the throat of the hmneL The effect of this blockage is to
increase the veIoeity of the fluid flowing past the model;
if the model is not too Iarge relative to the tunnel throat,! this
velogit.y increment. is approximately the same at all points
of the model so that the model is effectively working in a
uniform stream of fluid the veIocity of which is, however,
greater than the free-stream velocity observed at same
distante upstream of the modeI. It is therefore necessary
to correct. the observed veIocity, dynamic pressure, Mach
number, and other measured quantities for the effect of
this constriction. This correction k frequently caIIed the
correction for “soIid bIockage.” ln addition to this so]id-
bIockage correction, a correction for “wake blockage” is also
necessary if the true dynamic pressure and Mach number at
the model are to be determined. This wake blockage
arises bec~use the kid is slowed down in the wake and con-
sequently must be speeded up outside the wake. A further
eflect of the wake is to produce a pressure gradient which
must be considered in correcting the drag. coefficient.

Formulas for the solid-bIockage correct-ion for a model
mounted in a tn-odimensional-flow wind tunnel are given in
references 1,2, 3, and 4. The first.-ordereffeets of the com-
pressibiIit.y of the fluid on these corrections are given in
reference 5, as well as in references 3 rmd 4. References
2, 3, and 4 consider also the wake-blockage correction, and
reference 3 also considers the drag correction due to the
pressure gradient-caused by the wake. The for.rmdasgiren
in reference 3 for the solid- and wake-bIockagc corrections
w-Wusually be found most convenient whenever the engineer
is confronted by a practicaI problem of det-ermining the
corrections for any configuration met in his experimental
work.

The soIid-bIockage correction for a modeI mounted
three-climensionaI-flow wind tunnel has been given
number of different forms by d~erent authors. ~rot

iua
ina
only

do dfierent authors give the correction for the same co~-
figurgtion in dfierent, forms but no one author gives formulas
which are applioabIe to both fuselages and wings in tunneIs
of various shapes; for this reason, the engineer confronted
titk a correction problem may have to refer to severaIreports
to get. the complete solution of his probIem. Moreover the
moc~cations of the formuIas for the first-order effects of
fluid compressibility are given incorrectly in some cases.
References 1 and 2 give a formtia for the solid-blockage
correction for a body of revolution in a circular or rectangular
tunnel for the case of incompresaibIe flow. In references 5
and 6 the effect of the compressibility of the fluid on this
correction is discussed, but the resuIt given is incorrect.
Reference 4 gives a forwda for the solid-blockage correction
for a body of revolution and for a three-dimensional wing in
a 7- by 10-foot wind t.unneL The modification for com-
pressibility is correct for the wing but wrong for the body
of revolution. Reference 7 gives a. formula for the solid-
blockage correction for a body of revolution in a circuhm
tunnel, correctIy taking account of the effect of the com-
pressibility of the fluid. References 8, 9, and 10 give a
formula for the solid-blockage correction for any body in a
circular wind tunneI together with the appropriate constants
for a body of revolution and for a rectangular wing having
various span-to-diameter ratios; the modi.tlcation of this
formula to take account of compressibility is correctly given.

It is clear that no one report gives a.11the necessary
formulas together with the appropriate constants and com-
pressibility modifications to enable the engineer to calculate
the solid-blockage correction for any case with which he
may be confronted. Moreover, when the results of two or
more reports overlap, the forms are frequently different. so
that it is not obvious whether the results are in agreement.
lt is the purpose of the present report to summarize and
extend the reedts of the previously mentioned reports.
Formulas are given for the cahndation of the scdid-b]ockage
correction for a body of revolution or a three-dimensional
unswept wing in a circular or rectangiku- tunneI. These
formulas contain two constants, one depending on the shape
of the body and the other on the shape of the tmmel and
the ratio of wing span to tunnel breadth. (This ratio may
be taken to be zero for a body of revolution.) VaIues of the
first constant for, various bodies of revolution and for a
number of frequently encountered wing-protlIe sections are.
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given. Values of the second constant. for a circular tunnel
and for rectangular. tunnels .of a number of commonly en-
countered breadth-to-height ratios are given for various
wing-span-to-tunnel-breadth ratios. Same of these values
have been taken from the previously mentioned reports;
whereas others appear for the first time in the present report.
The discussion is limited to bodies centrally located in the
wind tunnel.

The wake-blockage correction for a model mougted in a
three-dimensional-flow tunnel is given in references.4,.8, 9,
and 10. For the case of incompressible flow. the formulas
are in agreement, but the n-dfication- to. take account of
compressibility given in reference. 4 cliffers from that given
in references 8, 9, and 10. This. mattw is discussed in “the
present report. In reference 11 the. Corrections for the.
pressure gradient due to the wake are given with the correct
compressibility factors.

All the final correction forndas togetl~w with directions
for their use are given in tbe fl.nalsection entitled !!.Concl.ud-.
ing Remarks.”. Mathematical symbols are defined as intro-
duced in the text. For reference, a list of the more important
symbols and their definitio- is given in appendm B.

SOLID BLOCKAGE IN INCOMPRESSIBLE FLOW

In studying the flow over a thin.a.irfoil.of small.carnbgr_at
a small angle of attack it has been show that the effects.of
camber and thickness may be considered independently. In
treating the probIem of wall interference, it is again con-
venient LOconsider the thickness and camber effect~ sep-
arately. The camber efhot, as pointed out in refcregce. 3,
co~tributcs nothing to the blockage correction. Conse-
quently it suffices.to determine the blockage. cor~ection for
symmetrical bodies .at zero angle of attack. This means
that for wings it is necessary to consider only the base profile
of the airfoil, the base profile”being defined as “theprofile the
airfoil would hwve if the camber were removed and the re-
sulting symmet,ric.alairfoil placed at zero. angle of attack;
bodies of revolution rmedbe considered only at zero angle of
attack.

RECTANGULAR TUNNEL

Three-dimensional wing,-The blockage correction for a
thrcedimensionaI wing in a rectangulm tunnel is considered
in reference 4. Numerictil valves are given only for a wing
of 6-foot span in a 7- by 10-foot wincl tunnel. The method
may, however, be applied to any rectangular tunnel and any
span-to-breadth ratio.

Consider a-rectangular tunnel”of height H and ‘breadtli “~.
Suppose that the wing span 2s is in the B-direction so that
2s/B is the span-to-breadth ratio. Aa in reference 4, let
t}le wing be represented by a series of IMte lines of sources
and sinks. (See fig. 1.) The strengths of these sources.
and sinks are assumed to depend on the airfoil profile. and
the determination of t.hese=~trengt~s, .whieh is a. two-
dimensional. problem, is explained presently. If each Iine
retains the same. strength from one. end to the other, the
wing section cannot be exactly constant. It will “thin
down at the extreme tip and the plan form wilI not be
exactly rectangular, but neither of these features is such as
LOdetract from its.usefulness for the presentpurpose, which

FICLMEL-Image system forthrco.rlhnemionnl wing In rectangulartunnrl.

is to represent an actma~wing sufllricntly well 10 w]ablc a
calculakio.n t.o bq made. of the velocity along the tunnel
axis “induced” by images of the wing. It is this ~elociLy
induced by the images. wKLchrepresents the effcwt of the
tunnel \tallson the velocity at tho modd, and which is the
solid-bloclsage correction.

Consider the image line source CD of strength Q pm unit
length. The velocity poteutid of u three-dimensioned
source 01stre.ugth Q@ (volume pcr unit timo) is —Q6y/4”w.
It’ follows that tho component velocity fdowg the tunnel
center line indticcd nt A by the sourc.c elcmcn~ Q~y is

where g and r are dcfi.ned in flgurc 1. Putting rs=
(mB–Y)’+n2H’+q’ and integrating from –s to SYgivcs

Q9
[

]n.B+s
‘Aud=4r(n2H’+ gs) ~inzH’+ga-* (mIl+@z-

. .,-

mB—s 1IMH2+g~+(m”B-sj2 (i)

for the single line sogrce. CD. No-iv CD is one image of one
finite tie source used to represent tho wing in the WHIM+.

In order to find the velocity inihlccd by all the images of thiis
particular line s~urce, it is necessary to add tbe results
obtained from equation (1) by giving m and n all positive
and n6gative integral values a~cept m=n= O. Thus for a
single line source.

roll-s 1 (2)
>ln21Y’+gf+ @B-s)2. .
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where the prime denotes that the term m=n=O is to be
omitted from the summation. Equation (2) may be re-

(3)

(4)

Now- c and r depeud only very sIightly on g/H and so it
usually suffices to take g/H=O in the evaluation of these
quantities. Any wing profile can be represented by a suitable
distribution of sources and sinks along the chord. It. follows
that the total induced ~-elocity due to the wing images is
obtained by summing over this distribution and is approxi-
mately

(5)

It,may be noted here that setting g/H=O in the evacuation
of u ancl .r is equivalent to representing the wing by a line
cLoubletof strength ZQg (analogous to references 1 and 2)
instetidof by a distribution of sources and sinks.

The quantity ZQg of equation (5) cart be determined
approximately from the wing profihe and this determination
is a two-dimensional problem. From reference 2, but with
the notation of reference 3, there is obtained

~Qg=; &~l (6)

where
c airfoil chord

P’ apparent free-stream velocity at airfoil as determined
from measurements taken at a point far ahead of
model

A a factor dependent on shape of base profde

Substitution of equation (6) into equation (5) yields

(7)

where
f masimum thickness of airfoiI
C cross sectional area of tunnel
If T“denotes the vohune of the wing, then ~“=%ctm where
K~<1 depends on the shape of the base profle. -Equation (~)
may be rewritten

.Alu’ K,T T’
~?f — C312

or

where

‘=+M
(lo)-

(11)

It k cIear that Tdepends only on the tunuel shape and the
wing-span-to-tunnel-breadth ratio; whereas Lrl, Ks depend
only on the shape of the base protie.

The factor A can be determined for any base profle from
the relation (references 2 ancl 3)

r ()16 ‘ ?/t t= ~fl +(dy,/dx)2d :,
A=- ~> (13)

ir .1]
where
?/t ordinate of base profile at. chordwise station x
dy,idx slope of surface of base profle at x - . .

P base-proiile pressure coefficierit at x in an incompres-
sible flow

Values of A for a number of base profiles are given in refer:
ence 3. Thus the value of Kz can be calculated from equa-
tion (12).The value of KI is immediately found from the
area of the base profle -wtilchmtiy be calcuIatecI,for example,
by a numerical integration from the ordinates of the base
profile. As soon as ~, is known, IG can thcm be calculated ..:
from equation (11). The emluation of ~ requires the sum- ._
mation of the infinite series in equation (3). The summation
of this series is e-xplainedin Appenclix L

Values of r for rectanguhw tunnels of various breadth-to-
height ratios wd for -rarious vrirq~-span-to-tunnel-breadth
ratios are given in table I and figure 2. Values of KI and R“S
for various base profiles-aregiven in tables 11 and 111. The
choice between the two formulas (8) and (9] is entirely a
matter of con-renience and should be decided in the light of
the avaiIable data.

Body of revolution.—The blockage correction for a body
of revolution in a rectangular tunnel is considered in refer-
ences 1, 2, and 4. In reference 4 numerical values are given
for some average streamline body of revolution in a 7- by
10-foot wind tunnel; whereas in references 1 and 2 numerical
values are given for prolate spheroids and Rankine Ovoids
in square and duplex (breadth equal to twice the height)
wind tuunels. Either the method of refereme 4 in which -
the body of revolution is represented by a suitable distrilm-
tion of sources and sinks along its chord or the method of
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TABLE I.—VALUES OF r FOR VAR1OUS TUNNEL SHAPES
AND CONJ?IGITRATIONS

‘\\ 3&mensional Jiing with spa~-to-bre~dthratio ‘
:::~:-f

\
tion :0 0~“‘~=o75 ~=lm

Tunnel shape -. ;=0.25 ~= . ~. ~.
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112 .&w
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1.224
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1.130
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1.230
1. Ho

I 1 1 I :1 i--l I

TABLE IL-VALUES OF K, FOR VARIOUS BASE PROFILES

\
Conren- NACA low-drag sections

JOnk&QW-tionrd

~=o ~’, ““p=
NACA

section =&& IE-OXX &~XX 65+XX 86-6XX11-Y—l— 1— I—1 —— l—l —1

0.C6
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.12
.15
.1,
.21
.25
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.36
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TABLE 111.—VAL.UESOF’& I?OR VARIOUSBASEPROFILES
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\
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-
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.842
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I ::
C!onven
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rc.fercnces 1 and 2 in which the body is represented by a
doublet of suitable strength at its center may be used to
obtain results for any streamline body of revolution in anJY
rectangular tunnel. Since the.method of reference 4 was
used for the three-dimensional wing, it is instructive to use
thp doublet method of references 1 and 2 for the body of
revolution case, although both methods give the e.ameresults.

Consider a body of revolution of maximum ~iclmess t and
length c centrally located in..a rectangular tunnel of breadth
B and height H. As in reference 2 the body may be repre-
sented by a doublet of strength Mgiven. by the equation

~=; ~.pu! (14)

where h is a constant depending only on the shape and fine-
ness ratio of the body. The velocity induced at. the model
hy the tunnel walia is the same as that induced by a doubly
infinite array of images of the doublet and is given by

(15)

2sfB

(a) VrwIationof, with ratioof wing span to Wrrncibrw.dth, MB, h’ wrfaw tunrrdshruw+.

J?KGURE 2.—V8hWSOfr fOrWUiOUStUMCl sh5pc~ and 20nIli2UrathIM.

L(X7

‘r .90

.80
/.0” ‘1.2 f.4 [.6 f.8 20

B/k?

(b) VarintiOnof ~ with ratio of rocfsmgnlsrtunrmlbrorrdtbto hdght, B/IZ, for a MY d
mwdution and for wings of various spsn-tu-tunnel.brcndth ratlm.

FICURE 2.—Conchrded.

the sui-nmat.ionbeing taken over all positive and negativc
integral values of m ftnd n except m= n.= O. If g/H= 0
equation (3) “may l.xirewritten

(16)

where the quantitie.s13~. and F~,, which arc introducfxl for
convenience, are defined by the equations

Fran= \_–s/B]2(B/11)2

It follows that

Substitution of equation (17) into equation (15) yiekls

‘–”(O’”’a‘Xu’ 4$13
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If p is replaced by its ~alue from equation (14) and equation
(4) is used, there is obtained

If T- denotes the volume of the body of revolution, then
~“= Kidz where ~& r/4 depends on the shape of the meridian
section of the body. (For a right circular cylinder whose
meridian section is clearly a rectangle K2= m/A.) Equation

or

where

(19)

(20)

TABLE IV.—VALUES OF KS FOR VARIOUS BODIES OF
REVOLUTIOIV
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-----
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TABLE V.—VALUES OF K, FOR VARIOUS BODIES OF
REVOLUTION

c?:R
.12
.14
.16
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.30

.:;

:
!4

t
1.00 , .6s8, .6!

0_472
.474
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.W
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5 ------.-----------------------------
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Z --..-._- -------- --ti.iii_ --------
3 -------- 0.41i

.%$.3 ----.-_-- ---__--.- -–:_- _M’L

.445 --.---_-- –------- --------- _______
--------- 0.462 -------.- -------- -------
--------- --------- —------- -------- --------
--------- ----—-- -------- --------- ---------
.-.----— —------ —----_— ----—-- -------

It should be noted that 7 for the case of the body of revo-
lution is the same as for the limiting case of a vring -whenthe
span approaches zero. As pointed out. in reference 2, h ma-y
be cahndated for any body of revolution whose pressure dis-
tribution is known. The necessary formula. is

where
Y radius of body at. chorclwise station z
dy/dx slope of mericlian section at x
P pressure coefficient at z iu incompressible flow
Values of k for prolate spheroids and Rankine Ovoids are
given in references 1 and 2. As soon as X is known for a
body, K, can be .calculateclat once from equation (23). The
value of KZ may be found from the vohune of the body of
revolution which may be cahmlated for example by a numer-

~
NACA ;11; t/c=O.20

Pro/ofe spheroid; f/c -0.20

~
Rmkine ovoid; +/c = CWO

JVACA133-30; t/e = 0.S0

~“
NACA III; t/c= 0.18

Fuhrm”ann swrce-sinfe bcdy; tic =0.18

6janme~.ic Fuhrmann source-sink body; t/c= 0.18

~
(3, 6,-/,0) Roc& of reference /4; +/c= 0.18

FIGCEE 3.-Sample bodies of revolution.
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ical integration, and K8 can bc..calculated from equation (22)
as soon as K2is known.

Values of r for rectangular tunnels of various’ ~readth-to-
height ratios are give-n in table I and figure 2. Values of
KS and K* for various bodies of rmmlution. are. given. in
tables I\Tand V. Some of these bodies. are d!?yn h figyre
3. lhfortunately these tables are rather incomplete ancl
moreover fuselage shapes used in practice are extremely
varied. However, in table I\Tit is observed that the values
of h’s do not depend very strongly on the shape of the ?Jody,
although they do depend on the thickness ratio. For this
reason it appears that for most fuselages it will be sufficiently
accurate to use the values of & give.g.for th$ .NAC.$ 111
bodies. As the values of KA gi~$enin table V are more cle-
penclent on the body shape, it is recommended that equation
(19) and table IJTbe used in preference t.oequation (20). anc~
tabIe V whenever possible. . ..- ---

CIRCULAB TUNNEL

Body of revolution .—It is convenient-to consider the case
of a body of revolution b.efo~e considering the case of t.hc
three-dimensional wing because more...attention has..beeu
given to the former by other. authors. _. (See rfferencse 1, 2,
7, 8, 9, and 10.) It will noiy be shoym that the blo&age
correction is again given by equations (19) and (20)where
r has avalue appropriate to a circular tunnel. Since Ks and
K~ depend on tbe model and. not on. the tul!ng], they are
still given by equations (22) and (23).

The most convenient stmfing point is the formula of
references 1 and 2, namely,

(25)

where & is the maximum cross-sectional mea of the moclel,
It is Only necessary to note that .

S’m=R-t’pl

v= I@

It follows at once that . _. ... . . .

Alu’ ~312 t3 M i#12ct~——~.
‘h TP~=T c 8 m ““”- ‘--” “(26)

Substitution from equations (22) and (23) reduces this to
equations (19) and (20); ‘ra~e@ively. It should be noted
that 7 of mferenc.es1 and 2 is iclenticalwith r of the present
report.

The value of r is given in table I and figure 2. Values of
K~ and K, are given in tables IV and V. Again equation
(19) is preferable to equation. (20). “.

The result of reference 7 fails to tal~.einto consideration.
the body shape and so it is not very useful except for less
exact calculations,. .The result of refe~ences 8, 9, and 10 is
presented in a difl’eren~form, namely,

A,il ‘
—-XV7V &-u’ (27)

where
Xv factox.depending on model shap[~
TV factor depending on tunnel shape
Y volume of model
B diameter of wind tunnel
It is of interest to sh~w thut equafiO[ls (19) and (20) can Iw

deduced also from equation (27)showing the latter to be
eq~iiva]en t. to q uat.ion (25).From rcf(’rmee 8, thrrc is
ob trained

4
TV=- T

‘R

Since also C=7rB2/4equation (27) yields at once
..

%=(::~)(:’)’7($ *)’-’:%& ‘---

This is the same m .cquation (26) which yields cquntions
(19)and (20) directly.

Three-dimen~ional wing,—The blockage correction for a
three-c]imensionalwing in a circuhm tunm’1is given in refer-
ences 8,”9, and 10j the formula being of t.hosame fww m for
a body of revolution in a. circular twndt m-mwly, cquti[ion
(27) where rr and A,?have vtilucs approprinto to [he llnwc-
dimensional wing. From rcfcrcncc 8 (using the nota tion of
reference 3 instead of .rcfcrencc 2) thvte is obtained

(2$)

(29)

Since also C= B#’/4 equation (27) yields at vncc

This is the same as equation (7) which Ids directly [u
equations (8) and (9) with the same doflnilions of 1{1 und
KS given in equations (11)and (12); r is, howover, givm by
equaticm (29) where rr is obt aincd from rcfwwws 8, 9, or 10.

Thus equations (8] and (9} may also be used for chwulnr
tunnels provided only that the appropriate vnlucs of r urc
used. Values of r arc given in taMo I and figure 2. J’ahws
of K1 t-ii-dK1 are.given in tabhx II d 111.

SOLID BLOCKAGE IN COMPRESSIBLE FLOW

In the preceding section the solid-blockage corrections
have been determined under the assumption thtit tho fluid
is incompressible. It is now necessary to dctiwnine the
modifications required in these formulas to take account of
the effects of the compressibility of the fluid. The mcthoch

of references 12 and 13 are very convenient for tl~ispurpose.
As the required modifications arc given iucorrcctly in rcfw-
ences 5 and 6, partially incorrectly in reference 4, and
correctly in references 7, 8, 9, and 10, it Rppearsworth whiio
to give some discussion of the matter,

.
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For the purpose of deducing the properties of a corapressi-
Me flow from those of a corresponding incompressible flow
the so’called “Extension of the Pmndtl Rule,” which was
first gh”en in reference 12 and repeated as Method IV in
reference 13, is probably of most. general a.pplication; but
the other methods of reference 13are sometimes more con-
venient for certain problems. The Extension of the Prandtl
Rule may be czxpressedin the following manner:

The streamline pattern of a compressible flow to be caL
mdatecI can be comparecl with the streandine pattern of an
incompressible flow which results from the contraction of the
y and z axes including the prcdle contour by the factor
~~1—M’ (M= free-stream Mad number) (.x a.sis in the
direction of the free stream). In the compressible flow the
pressure coefficient as well as the increase in the longituclinal
velocity are.greater in the ratio l/(i—.3P)and the stream-
line slopes greater in the ratio l/J1 –M’ than those at. the
corresponding points of the equivalent incompressible ffow.

Since forrmdas (8) and (19} for the three-dimem~ionalwing
find the body of re-roh~tionhave the same form and also
apply to both rectangular and circular tunnels, it suffices to
cletermim the modification due to compressibility for them.
Let the subscript c refer to compressible flow and the sub-
script i to the corresponding incompressible flow. If TZ is
the volume of the model in the compressible flow, then ~-i,
the volume of the model in the corresponding incompressible
flow, is given by

0

T“,=[l–(M’)’]T”G

where .11’ is the apparent free-stream Mach number at the
model as determined from measurements taken at a point
far aheacl of the model. Also if CCis the cross-sectiomd
area of the tunnel in the compressible flow, then Ci the
cross-sectional area of the tunnel in the incompressible flow
is given by

C,=[l–(.W)’J cc

T is unaffected by the transformation and the effect on K1
and & is sufficientbj smaIl that. it may be neglected. From
the Extension of the PrtancltlRule it follows that

-wherej denotes the numbers 1 or 3. Since equations (8)
ancl (9) are equivalent as are also equations (19) and (20),
it follows that- in aU cases it is onIy necessary to multiplj-
the blockage corrections given by these formulas by
[1– (M’j2]-3/~ in orcler to take account of the compressibility
of the fluid.

As a check it is useful to determine the compressibility
modification for the case of a body of revolution in a circular
hmnel by Method II of reference 13,since the derivation
is so simple by this method. Both the bocly shape and
the longitdimd velocities are the same in the corres~ond~w
compressible and incompressible flows; only the tumel

dimensions are altered by the factor ~~1– (M’)2 so that
4?{=[1 – @I’)~Cc. There is obtained

as before.

‘WAKEBLOCKAGE IN COMPRESSIBLE FLOW

The blockage due to the wake of a model in a two-dimen-
sional-flow tunneI is discussed in some detaiI in reference 3.
Much of this discussion is”applicable without change to the
case of a three-dimensional.flow tunnel. The fundamental
idea of replacing the model and ‘its wake by a source @ this
case a three-dimensional source) of suitable strength located
at tbe position of the model can be used again arid in fact the
determination of the source strength Q ctin be carried out in
exaktly the same manner. The result.is identical with that
of reference 3, nameljj

.

Q=P’y”s [1+ (-f– 1)(.w)q (30)

There
Q mass flow of scmrce rather than volume flow as used

previously
f mass density of fluid at point far upstream

:D’ uncorrected drag coefficient referred to apparent dy-
namic pressure g~

~ area On which drag coeilicient is based
Y ratio of specific heat of gas at constant pressure to

()
specific heat at constant vohlme ~

In equation (30) powers of M’ higher than (M’j2 have been
neglected.

Consider now a rectagular tunnel of height H and breadth ...
l?. The. tunnel walls are replaced bj a doubly Mmite array
of sources of strength Q at distances mB to the sicleand nH
above ancl below the position of the model.

By malsi.rg use of Method H of reference ]3,it is readily
shown that a threedimensional source of strength Q (mass
per unit time) in a uniform flow of compressible fluid will
induce at the point the coordinates of which are x, y, z rela-
tive to the source a streamwise ~elocity.

vrhere the uniform flow is in the r direction ancl p and M are
the density and Mach number, respecti~ely, of the undis-
turbed stream.

It follows that the streamwise -relocity A:T’ induced at a
point on the center line of the tumel by the entire system
of images is

where p’ and M’ are the density and Mach number of the
undisturbed flow in the tunnel and the summation is taken
over all positive and negative integral values of m and .n _
except m =n= O. The velocity induced by the image
sources at.an infinite distance upstream ia
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But. conditions fur upstream must remain unchanged and to
achieve this it is necessary to. cou.ntmbalance this velo@y
by superposition of a uniform flow of. equal magnitude but
opposite sign. The addition. of thk flow at all points in the
field will result in a speeding up of the general flow at the
position of the airfoil by the nmount

The summation of this seriescan be obtained by the following
art.ifiec. Substitution of. equation (30) into equation (31)
and setting M’= Ogives

CD’SIT
(A,u’)t=zim ST “~j(X2+ ~2~:+n2~2)31a (32)

x-l .

But according to refwences 4, 8, 9, ancl 10
.

(–)Aa~’ 1CD’S=—— ..”. .
U’,4%H

comparison of equations (32). ancl (33)”show that

limz Tx’+ 7n213F+n’ZW)3i’-i&” ““z-)-
(34)

If in equation (34) B and H are replaced by 111–(M’)2--.73- ..-
and ~/1—(34’)2 H, respectively theie:%”obtained

& z ~ +ti’u~)~i’= [1–(fl)ql?H

(3.5)

Substitution of equations (35) and (30) into equation (31)
yields

on setting Y=l.4. The preceding discussion is for a rectan-
gular tunnel, but in references 8, 9, and 10 the same formula
is given for a tunnel of any shape for the case M’= O. Con-
sequently, equation (36) may “be taken-to hold generally for
n tunnel of any shape. -

In reference 4 the wake-Mockage correction is given cor-
rectly for incompressible flow but the modification to. .takc.
account of compressibility is given incorrectly, as it is deter-
mined from reference 5 which, as pointed out in reference 13,
is incorrect. The effect of compressibility on the wake-
bloeka.ge correction is determined in refereucw 8, 9, and 10
by means of the correct form of the Extension of the Prandt.1
Rule but there is some question whether this rule is applica-
Me to this problem. It appears that in using this method
to determine the effect of compressibility on the blockage
correction, the effect of compressibility on the source strength
Q given by equation (3o) isoverlooked. This explains the
discrepancy between equation (36) and the formula of refer-
ences 8, 9, and 10.

WAKE PRESS URE GRADIENT IN COMPRESSIBLE 1%0W

The eflcct of the pressure gradient caused by Lhewake is
discussed in reference 3 for compressible flow in a two-
dimensiond wind.tunnel and in reference 11 for comprwsihlc
flow in a circular wind tunnel. The method of rcfrrcm:c 1I
is equally applicable to the.case of a reelan,gulfirwind [u.nnd
if the appropriate value of r (table 1) is uscci.

The longitudinal velocity inc.remcnt due to the rtlkct of
the tunnel boundaries on the source lLwi to simulate [k
wake has an approx’imately linear gradient iu t11(IS(rram
direction at the rnodcl location. This linear grndient in the
velocity is equivalent. to u linear gradient. in lhc pressure m
is easily seen from the approximatee rclation.

In reference 11 it is shown thut the gradimt in As[r’ for n
source in a wind tunnel is identically equal to thr value of
AZL7’for a doublet in a wind tunnel. In lhc nottition of
the present report. there is obtained

rdp’ _ , a- C*’S()z ,= !l>~r-pir
‘ .

For compressible flow this becomes

.,1+ 0.4(M’)2r—r C’zs
‘-q [1– (M’)’]312\ z “ Pi’

The increase in the drag resulting from ll!is pressure
graclient is equal to the procluct of the pressure graciicnt
by the sum of the actual model volume. and the virtunl
volume (reference 2). It should IJOnoted that. [ho conshmts
K, and KS of tables H and IV qre equal to +(7r/4) times
the ratio of the sum of the actual model volumr and the
vi.rtua.lvolume to the nchltd model volume, tlwsc qmmtitics
being calculated under the assumption of im.xmprrssii.de
flow. Thus the increase in drag coefficir~~tc~uscd by “the
pressure gradient. is given by

(37) ,

for the wing, and
*CD ,_ 1+ 0.4(.31’)2~<s7~rbf?~’

‘ – [1–(ikf’)2]a12 Cal’ @6)

for the body of revolut ion.
It is pointed out in reference 11that Lk virLual volume is

altered by the compressibility of the fluid. Thus cquat ions
(37). and (38) can be slightly improved if 1{, and Ka nppwiring
therein are corrected to ta kc account of thk cffwt. ‘1’hc
necessary modification is made by replacing FCl and & in
these equations by Klz and K’P, respect.iwly, wiwrc

.
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u .4 .8
M’

L=

FIOI!EE .L—Lineorcornprfi.ibility correctionfactor for virtual volume. From reference 11.

where h (M’) is given by figure 4 which is reproduced from
reference 11. It shotdd be noted tlmt the irnpro~ement in
raodlfying ITl ancl & for compressibility will be srnalI es-
pecially in the case of Kii for the body of revolution. It is
important only for quite high Mach numbers. This acldi-
tiomd refinement.was not macle in reference 3.
“ It appears that a simiIar compressibility modification of
KI and & in the fornndas for the solid blockage should be

made} but. the exact modification required is not known.
However, it.is believed to be smalL

~ORRECTIO~ OF MEASUREDQUAWJ!ITIES

The true -relocity ~ at a model consist~~ of a body of
re~olution and fig can be obtained from the apparent
velocity ‘U’ by applying the solid-blockage and wake-
blockage corrections. The true velocity may be written in .
the form

U=U’(l+IQ (40]
where

K=Ku+Kb+h7u~ - (41]

In equation (3s] Kw is the solid-blockage correction due to
the wing ancl is given by

or ‘

Kb is the
revolution,

or

solid-blockage correction due to the body of
behg given by

.

‘b=[1–Gi!!’)y‘s b

-&iC~b2

“=[1 –(:1’)’]3/’~31!a

Kwkis the wake-liockage correction ancl is gi-ren by

Ku,=
1+0.4(.U’)ZCD’S
1— (..1’)*+@

(4’+]

(45)

(46)

It is evident. that a correction to the apparent velocity in
a compressible flow implies corrections also to the apparent
density, d-ynamic pressure, Reynolds number, and Mach

TABLE J’I.-COMPRESSIBILITY FACTORS FOR CORRECTION EQUATIOA’S

: !!!Iiill!!ik!11’3“?.! !!~$ “ : [J -

5 ~
— — — — — . — —
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number. Thcw corrections are readily obtained on the
basis of the usual assumption that the flow is adiabatic... .It
is assumed that the correction terms are small compared
with unity, so t.hat squares ancl products of these terms may
be neglected. The analysis follows the lines of reference 3,
and it is not necessary to repeat the det.ailshere. The fol-
lowing equations me obtained:

p=p’[1 –-(IW)*KJ (47)

q=.g’{1 +[2--(+M’)’]K} (48)

R= R’{ 1+[1– 0.7(.W)TK} (49)

M= M’{ 1+“[l”+o.2(M’)’pq (50)

The drag coefficient must be corrected for the. effect of. the.
pressuregradient due to the wake as well as to refer it to the
correct dynamic pressure. There is thus obtained

C. =C.’~ 1– [2–(M’)2]K] –ACDW’–ACD,’ (51)

where AC~W’and AC~,’ are given by equations (37) and (38)..

~umcrical values of the functions of M’ which appear in
these equations are given in table VI;

~ONCLUDINGREiMARKS

Data obtained from tests of t,luwe-dimensionalmodels,
which are small relative to the wind-tunnel dimensions, can
be corrected for solid anclwake blockage and for the pressure
gradient due to the wake by means of the following equations:

Z7=V’(1 +A7 (40)

~=.Q’{.1+[2–(3f’) 21~] (48)

R= R’{1+[1–0:7(M’)’]K} (49)

M=kf’{1 +[1+0.z(.fw)qlq (50)

CD= CD’{1– [2– (M’)2]K)–ACDW’–ACD: (51)

In the precedi~ equations K is obtained from the following:

K=Kw+Kb+Kw~ (41)
where

or
KN2sc&7

‘w= [1–(:1’y]ajz @12

(42)

(43)

or

AERONAUTICS

.,

‘b= [1 _(A&73/2 +$#”-

&T@~%—.. --..-.—-...—==-——-.1<”=[1–(::1’)7’1’ C312

~ ~= 1+0.4(M’)2CD’S— .-—w 1– (M’y 4C

(44)

(45}

(4G}

(37)

(38)

Iil these equations r is a factor which for a body 01revolu-
tion depends only on the shape of the tumwl; wlwrms for n
three-dimensional wing r drpends on the Mio of tlK! wing
span to the tunnel breadth us well as on the tunncl shapo.
(The wing span is in the djrcction of. tiw tunnel brradth.)
Values of ~ are given in ttiblc I“and figure 2. Tlw c!onsitmts
KI and 112for the three-dimensional wing dqwnd only on
the wing base profile shap~!and cfin be calc:ulatcclby means
of equations (11),(12),and (13). Values of lil and & fm
a number of whg profiles are given in talhs II ad 111.
The .ccmetauts& and A“4 for thr body of revolution depend
o“n~yon the Shap{!.ofthe body and (!ank! calculntrd by nwam
of equations (22), (23), and (24). Values of thcse conshmts
for a number of body shapes arc given in Mdcs IV nnd V;
some of these shapes arc drawn in figure 3. Since [Ilcsc
tables are incomplete and fuselage form.. ara ROLslamlnrd-
ized as are wing sections, it k recommended thal the wducs
of K3 giten in table IV for the ~ACA 11I series of shap(!s
be used for “any fuselage shape which does not diflcr f.oo
greatly from an NIACA 111 shape. This implks tlmLequti-
t.ion (19) and table IV should be used.in preference to cqun-
tion (20) and table V whenever possible. Numcricnl vnlues
of t.be functiom of M’ which appmr in tli(’ correction cqun-
tions are given in tablo VI.

The constunts K, tind ~{atippearing in equations (37) and
(38) maj be modified for compressibility by nwaus of figuro
4. The modif%d values of L“l and & arc to be used ij~
equations (37} and (38) ..cmlyand not in equnt.ions (42) and
(44).
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APPEM)IX A

SUMMATION OF THE INFINITE SERIES FOR c(O, S/~, Bill)

From equations (3) and (16) it.is seen that a(O, s/B, B/H)
may be written in the alternative forms.

.(cl,;,g)=xf 2m
E.. Fm.[(7n+s/E)Fmx+(m–s/B) .Em%]

(M)

where the summation is taken for all positive and negative
integral values of m and n except m=n=t) and the quantit;es
E~m and F.n, which are intreduced for convenience, are
detl.uedby the equations

It is possible to sum the series for a(O, s/B, B/H) exactIy

ordy when s/B=~. In this case equations (M) and (M)

yield

. .

For other values of s/Bit is necessary to sum the series nurnericdy. The series maybe revrritten

where ~is m arbitrary positive integer and RN(O,s/B, BjH)
denotes a remainder term. In e~aluating u(O, sIB, B/H) in
the present report., N was usually taken equa~ to T and the
summations indicated in equation (A3) were carried out ex-

actly; whereas an approximate -due was used for the re-
mainder term. An approximate formula for R~(o, s/B,B/H)
is

,

7 [-
2\ (W)’ @T+;)2+ 1/4

R.v(o,;z = ——

( J’+(A’+’ ‘H+(B2° ( i) -(B/H)3 N+5 (B/H)2 A’+

2@/H)2(I/4)+@T+9’

1
)

+ \f(W32+ I

(B/H)2@+5 ()
(B@)2 AT+~

.- 1
It fl now be shown how formula (A4) is obtained. It is easiIy verified that

m~b”dy - dx

[Y2+(g/@2x’13/2-@& b‘(B/&a-
—— ~(B/H)2az+b2

.a (B/H)%b
and that

J“dx1_=—. z’2az

(A4)

. .

(A5)
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provided a, b>O. Xow. RN(O,s~B, B/H) is approximately
(“’ ‘)- (J”’YJ;+!’’+S;+l’’’J””-

RN OP~ –4equal to R.V(O,O,B/H) and it is easily found that
5 2 2 i

‘llese summations may be approximated by suitable inj,e-
1

If the integrals of equa~ion (A7) arc evaluated by means of
grids so that approximately equations (A5) and LA6), then equation (A4) is obhtinccl.



APPIHNDLXB

LIST OF IMPORTANT SYMBOLS

tunnel breadth or diameter

tunnel height

tunnel cross-sectional area

chord of airfoiI or bocly of re-rolution

maximum thickness of airfoil or body of revolution

vohune of wing or body of re-roktion

maximum cross-sectional area of body of revohl-

tion

half span of wing

drag coefficient

mocleI area on which drag coefficient is based

strewn wlocity

Mach number

Reyuokls number

ratio of specific heat .of gas at constant pressure to

specific heat. at constant volume (cP/c,)

mass density

clynamic pressure

factors deptmchng on shape of airfoil base profile

(See equations (11), (12), and (13) ancl tables

H and 111.)

factors depending on shape of body of revolution

(See equations (22), (23], and (241) and tables

N and V.)

Iinear compressibility correction factor for titua.1

volume (reference 11)

factor depending on tunnel shape and wing-span-

to-tunnel-breadth ratio (See equations (10) and

(21} and table 1.)

totxd blocIiage correction (See equation (41).)

wing-blockage correction (See equations (A2) and

(43).)
K, body-blockage correction (See equations (44) and

(451.)
h“uk wa.lie-bloclia.gecorrection (See equation (46).)

Superscript.:
(’) -whenpertaining to fluid properties, denotes values

existing in tunnel far upstream from model;
when pertaining to airfoiI characteristios, denotes
values in tunnel, -coefficients being referred to
apparent dynamic pressure q’

Subscripts:
(Used only when necessary to avoid ambiguity)

c denotes values in compressible fluid - “
i denotes values in incompressible fluid
w clehotes values for wing
b clenotes values for bochj-of revolution
Wk denotes values for wake., *
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